

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI-600034

M.Sc. DEGREE EXAMINATION-CHEMISTRY

FIRST SEMESTER-NOVEMBER 2015

CH-1814: QUANTUM CHEMISTRY AND GROUP THEORY

Answer ALL questions.	Part-A	$(10\times 2=20)$
Date: 07/11/2015 Time: 01:00-04:00	Dept.	Max: 100 Marks

- 1. Determine whether the following functions are odd or even. Justify your answer.
 - (i) $e^{-x^2}cosx$ (ii) x^2sinx
- 2. Rigel, the brightest star in constellation Orion, has approximately a blackbody radiation spectrum with a maximum wave length of 145 nm. Estimate the surface temperature of Rigel.
- 3. What is quantum mechanical tunneling?
- 4. Show that the eigenvalues of Hermitian operators are real.
- 5. Obtain the ground state atomic term symbol for carbon.
- 6. State variation principle. Mention its significance.
- 7. Mention any two point groups that obey mutual exclusion principle.
- 8. Why is a molecular plane always identified to form a class by itself?
- 9. Mention the significance of Secular determinant.
- 10. Write down the Hamiltonian for Hydrogen molecular ion.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Convert the Cartesian coordinate $(-1,1,-\sqrt{2})$ into spherical polar coordinates.
- 12. Derive time independent Schrodinger wave equation from time dependent equation.
- 13. The force constant for H⁷⁹Br is 392 Nm⁻¹. Calculate the fundamental vibrational frequency and zero point energy of H⁷⁹Br.
- 14. Use the method of separation of variables to break up Schrodinger equation for a rigid rotor into ordinary angular equations and write the solutions for each.
- 15. Show that for a 1s orbital of a hydrogen like ion, the most probable distance from the nucleus to electron is a_0/Z .
- 16. State Pauli's antisymmetric principle and illustrate it for the ground state of helium atom.
- 17. Evaluate the commutator for angular momentum components L_x and L_z .
- 18. Classify the symmetry operations of i) NH₃ ii) H₃BO₃.
- 19. How will you arrive at the matrix representation for S_n operation?
- 20. What are the features that distinguish the Huckel method from other LCAO methods?
- 21. A molecule is found to have 5 classes of 8 symmetry operations. Work out the number and the dimensionality of the irreducible representations.
- 22. What are coulomb and exchange integrals? How are they obtained?

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23a. Explain the postulates of quantum mechanics.
 - b. Show that the wave function, $\psi = xe^{-x^2/2}$ is an eigenfunction of the operator,

$$\hat{O} = -\frac{d^2}{dx^2} + x^2$$
 and find the eigenvalue. (6+4)

- 24a. Derive the wave function and energy for a particle in a rectangular three dimensional box.
 - b. Determine the wave length of light absorbed when an electron in a linear molecule of 11.8 Å long makes a transition from the energy level, n = 1 to n = 2. (7+3)
- 25a. Evaluate the first order correction to the energy term when an electric field of strength 'F' is applied to a particle in a one dimensional box of length 'l'.
 - b. Draw the radial distribution plot for 3d and 4s orbitals of H-atom and indicate the nodes. (8+2)
- 26a. Outline the construction of the character table for C_{3v} point group.
 - b. Find the Huckel molecular orbitals and energies for allyl radical. (6+4)
- 27. How is the energy of the orbitals of hydrogen molecular ion determined through energy and overlap integrals?
- 28a. Prove that one of the operations of the symmetry element S_6 corresponds to C_3 axis independently.
 - b. Predict the Mulliken symbols for the irreducible representations T₁, T₂, T₃ in the D₃ character table shown below. (4+6)

D_3	Е	2C ₃ (z)	3C' ₂		
T_1	+1	+1	+1	-	x^2+y^2, z^2
T_2	+1	+1	-1	z, R _z	-
T ₃	+2	-1	0	$(x, y) (R_x, R_y)$	$(x^2-y^2, xy) (xz, yz)$
